On sums of graph eigenvalues
نویسندگان
چکیده
منابع مشابه
On eigenvalues and eigenvectors of subdirect sums
Some new properties of the eigenvalues of the subdirect sums are presented for the particular case of 1-subdirect sums. In particular, it is shown that if an eigenvalue λ is associated with certain blocks of matrix A or matrix B then λ is also an eigenvalue associated with the 1-subdirect sum A ⊕1 B. Some results concerning eigenvectors of the k-subdirect sum A⊕k B for an arbitrary positive int...
متن کاملBounds on graph eigenvalues I
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n 2; maximum degree ; and girth at least 5; then
متن کاملBounds on graph eigenvalues II
We prove three results about the spectral radius μ (G) of a graph G : (a) Let Tr (n) be the r-partite Turán graph of order n. If G is a Kr+1-free graph of order n, then μ (G) < μ (Tr (n)) unless G = Tr (n) . (b) For most irregular graphs G of order n and size m, μ (G)− 2m/n > 1/ (2m+ 2n) . (c) Let 0 ≤ k ≤ l. If G is a graph of order n with no K2 +Kk+1 and no K2,l+1, then μ (G) ≤ min {
متن کاملOn Laplacian Eigenvalues of a Graph
Let G be a connected graph with n vertices and m edges. The Laplacian eigenvalues are denoted by μ1(G) ≥ μ2(G) ≥ ·· · ≥ μn−1(G) > μn(G) = 0. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for μ1(G)+ · · ·+μk(G) and lower bounds for μn−1(G)+ · · ·+μn−k(G) in terms of n and m, where 1 ≤ k ≤ n−2, and characterize the extremal cases. We also ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.05.001