On sums of graph eigenvalues

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on direct sums of baer modules

the notion of baer modules was defined recently

On eigenvalues and eigenvectors of subdirect sums

Some new properties of the eigenvalues of the subdirect sums are presented for the particular case of 1-subdirect sums. In particular, it is shown that if an eigenvalue λ is associated with certain blocks of matrix A or matrix B then λ is also an eigenvalue associated with the 1-subdirect sum A ⊕1 B. Some results concerning eigenvectors of the k-subdirect sum A⊕k B for an arbitrary positive int...

متن کامل

Bounds on graph eigenvalues I

We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n 2; maximum degree ; and girth at least 5; then

متن کامل

Bounds on graph eigenvalues II

We prove three results about the spectral radius μ (G) of a graph G : (a) Let Tr (n) be the r-partite Turán graph of order n. If G is a Kr+1-free graph of order n, then μ (G) < μ (Tr (n)) unless G = Tr (n) . (b) For most irregular graphs G of order n and size m, μ (G)− 2m/n > 1/ (2m+ 2n) . (c) Let 0 ≤ k ≤ l. If G is a graph of order n with no K2 +Kk+1 and no K2,l+1, then μ (G) ≤ min {

متن کامل

On Laplacian Eigenvalues of a Graph

Let G be a connected graph with n vertices and m edges. The Laplacian eigenvalues are denoted by μ1(G) ≥ μ2(G) ≥ ·· · ≥ μn−1(G) > μn(G) = 0. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for μ1(G)+ · · ·+μk(G) and lower bounds for μn−1(G)+ · · ·+μn−k(G) in terms of n and m, where 1 ≤ k ≤ n−2, and characterize the extremal cases. We also ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2014

ISSN: 0024-3795

DOI: 10.1016/j.laa.2014.05.001